Künstliche Intelligenz: Forscher bauen Device für biologisches Gehirn

Neurocomputer, die künstliche Intelligenz ermöglichen, ahmen die Funktionsweise des Gehirns nach. Sie speichern Daten in Form von Synapsen, einem Netzwerk von Verbindungen zwischen den Nervenzellen oder Neuronen. Die meisten Neurocomputer verfügen über eine herkömmliche digitale Architektur und verwenden mathematische Modelle, um virtuelle Neuronen und Synapsen aufzurufen.

On-Chip-Gehirn

BU: Illustration: On-Chip Gehirn, © Elena Khavina/MIPT Press Office

Eine Forschergruppe des Moscow Institute of Physics and Technology (MIPT) hat nun ein neues Device entwickelt, das wie die Neuronen im menschlichen Gehirn funktioniert. Es speichert Informationen und löscht sie wieder, wenn sie lange Zeit nicht abgerufen worden sind. Es ist als Memristor zweiten Grades bekannt. Ein Memristor ist ein elektrisches Bauelement, das zwischen seinen beiden Anschlüssen einen elektrischen Widerstand aufweist, der je nach Stromstärke, abhängig von der Richtung größer oder kleiner wird.

Architektur ermöglicht weitaus schnellere Computer 

Das Gerät beruht darauf, dass die Informationen in einem Netzwerk aus Neuronen gespeichert werden, die über Synapsen miteinander verknüpft sind. Die künstlichen Neuronen und Synapsen wiederum basieren auf Hafniumoxid. Sie sind der erste Schritt auf dem Weg zum einem Neurocomputer, der die natürliche Art zu lernen imitiert. Im Normalfall haben sie eine digitale Architektur wie jeder andere Computer auch. Sie nutzen mathematische Modelle, um das Netzwerk des Gehirns nachzubilden. Alternativ dazu kann jedes Neuron als Memristor dargestellt werden. Viele davon werden zu einem Netzwerk verknüpft. Eine solche Architektur ermöglicht weitaus schnellere Computer und senkt den Stromverbrauch. Vereinfacht ausgedrückt, bedeutet ein hoher Widerstand im Memristor eine "Null", ein kleiner Widerstand eine "Eins". Genauso speichert das Gehirn eine Information. Wenn eine Synapse ein Signal an zwei Neuronen übermittelt, entspricht das der "Eins", tut sie es nicht, ist es eine "Null". In einem Gehirn werden die aktiven Synapsen gestärkt und die weniger genutzten geschwächt. Das nennt sich neuronale Plastizität. Darunter versteht man die Eigenart von Synapsen, sich nutzungsabhängig zu verändern, um Prozesse zu optimieren. Dieses Phänomen sei die Basis für natürliches Lernen, unterstreichen die russischen Forscher.

"Unser System ist robuster"

Bei bisherigen Versuchen wurde die neuronale Plastizität mit der Zeit schwächer. "Unser System ist robuster", sagt Anastasia Chouprik, die das Forscher-Team leitet. Sie nutzt die Tatsache aus, dass Hafniumoxid ferroelektrische Eigenschaften hat. Dessen Polarisation verändert sich, wenn es einem äußeren elektrischen Feld ausgesetzt ist. Wird es entfernt, behält das Material diesen Zustand bei - fertig ist die ferroelektrische Synapse.

(pte/map)
Zurück zur Startseite
Medienkooperation
Ultraschall 2019
Weitere Newsmeldungen
    • Goldpartikel gegen Krebs: Neuer Wirkstoff verlangsamt signifikant Tumorwachstum
      In einer kürzlich veröffentlichten Forschungsarbeit haben australische Wissenschaftler der Molecular Engineering Group, der RMIT University, einen neuen Wirkstoff gegen Krebs auf Goldpartikel basierend vorgestellt. Vorklinische Studien zeigen, dass das neue Molekül Krebszellen vierundzwanzig Mal eff...
      Mehr
    • Neues Nano-Immuntherapie-Medikament kann die Blut-Hirn-Schranke überwinden
      Eine neue Studie eines Forscherteams vom Cedars-Sinai Medical Center, Los Angeles, USA, gibt Aufschluss darüber, wie Immuntherapien, die dem körpereigenen Immunsystem bei der Krebsbekämpfung helfen, eines Tages direkt an das Gehirn abgegeben werden könnten, um Hirntumore zu behandeln. Die Wissensch...
      Mehr
    • ZNS-Krankheiten im Genom festgeschrieben?
      Wissenschaftler der Klinik für Neurologie der HHU, Düsseldorf haben untersucht, ob es eine Beteiligung von humanen endogenen Retroviren (HERVs) an neurologischen Erkrankungen gibt. Sie erklären in einem aktuell erschienen Review-Artikel, wie Viren in die DNA gelangten und was sie mit ungelösten Frag...
      Mehr
    • Forschergruppe entdeckt potenziellen Ansatzpunkt für neue, spezifische MS-Therapien
      Wissenschaftler haben entdeckt, dass bestimmte Zellen im Gehirn, die als „Projektionsneurone“ bezeichnet werden, eine zentrale Rolle bei den Gehirnveränderungen spielen, die mit der Multiplen Sklerose (MS) einhergehen. Neue Forschungsergebnisse zeigen nun, dass
      Mehr
    • Nanomedizin: Implantierbare Chip-Plattform für einstellbare Arzneimittelabgabe
      Forschern des Methodist Research Institute im Texas Medical Center ist es gelungen, erfolgreich kontinuierlich vorher festgelegte Dosierungen von zwei Medikamenten gegen chronische Krankheiten zu verabreichen. Dafür wurde ein sogenanntes Nano-Channel-Delivery-System (nDS) eingesetzt, das
      Mehr
    • Vorhersage von Risikofaktoren für bipolare Störungen möglich?
      Brasilianische Wissenschaftler haben Muster der neuronalen Aktivierung während einer Aufgabe mit Belohnung die Schwere der Symptome bei jungen Erwachsenen vorhergesagt, die noch nicht an bipolaren Störungen litten. Leidet bereits ein Familienmitglied an einer bipolaren Störung, besteht ein Erkrankun...
      Mehr
    • Erstmalig steht das Magnetresonanz-Fingerprinting (MRF) als Produkt für die klinische Forschung zur Verfügung
      Siemens Healthineers präsentierte auf dem ISMRM-Kongress (International Society for Magnetic Resonance in Medicine) in Montréal, Kanada, als erster Anbieter weltweit das Magnetresonanz-Fingerprinting-Verfahren (MRF) für die Gewebeanalyse in der klinischen neurologischen Forschung. Die MRF-Applikati...
      Mehr
    • Theranostics: Schwarze Melanin-Nanopartikel verlangsamen Tumorwachstum
      Nanopartikel gelten als vielversprechender Ansatz für die Tumorbekämpfung, weil Tumorgewebe sie aufgrund eines durchlässigeren Blutgefäßsystems leichter aufnimmt als gesunde Zellen. Ein Beispiel für sie sind kleine Bläschen, die von Bakterienmembran umgeben sind und als "Outer Membrane Vesicles" (OM...
      Mehr
Zum Archiv

Quellen-URL (abgerufen am 19.09.2019 - 20:54): http://www.neuromedizin.de/Forschung/Kuenstliche-Intelligenz--Forscher-bauen-Device-fuer-biologis.htm
Copyright © 2014 | http://www.neuromedizin.de ist ein Dienst der MedienCompany GmbH. | Medizin-Medienverlag | Amselweg 2, 83229 Aschau i. Chiemgau | Geschäftsführer: Beate Döring | Amtsgericht Traunstein | HRB 19711 | USt-IdNr.: DE 223237239