Helmholtz Zentrum München: Forscher liefern ein tieferes Verständnis für amyotrophe Lateralsklerose (ALS)

Die amyotrophe Lateralsklerose (ALS) ist eine nicht heilbare Erkrankung des Nervensystems. Bei ALS-Patienten gehen bestimmte Nervenzellen, sogenannte Motoneurone zugrunde, die zur Bewegung von Skelettmuskeln benötigt werden. Forscher des Helmholtz Zentrums München berichten in einer Studie, die in der Zeitschrift „Molecular Cell“ aktuell veröffentlicht wurde, wie sich Zellen „entscheiden“, welcher Pfad eingeschlagen wird. Bei Ihren Forschungsarbeiten fanden Sie ein Protein und eine RNA, die eine entscheidende Rolle in diesem Prozess innehaben. Diese Entdeckung liefert den Wissenschaftlern zufolge ein tieferes Verständnis für die amyotrophe Lateralsklerose (ALS), eine fortschreitende Erkrankung des motorischen Nervensystems. Zusammen mit seinem Team zeigt nun Dr. Micha Drukker vom Institut für Stammzellforschung (ISF) des Helmholtz Zentrums München, wie solche Vorgänge auf molekularer Ebene gesteuert werden. Ausgangspunkt war zunächst eine im Fluoreszenzmikroskop sichtbare Struktur im Zellkern.

Zwei Schlüsselfaktoren im Zellkern

„Uns fiel auf, dass Bereiche im Zellkern, die sogenannten Paraspecklen nicht in iPS-Zellen vorkommen, aber während der Differenzierung schnell gebildet werden, und zwar unabhängig vom Zelltyp, der dabei entsteht“, sagt Dr. Miha Modic, der Mitglied der Arbeitsgruppe von Dr. Drukker war. Drukker und Modic nahmen an, dass dieses Phänomen mit der Fähigkeit von Stammzellen, sich in Körperzellen umzuwandeln, in Verbindung steht. Zusammen mit Prof. Ule Jernej vom University College London und mit Markus Grosch, Doktorand aus Dr. Drukkers Gruppe, entdeckten die Wissenschaftlerinnen und Wissenschaftler Schlüsselmoleküle im Zellkern, die das Auftreten der Paraspecklen veranlassen und fanden heraus, wie diese die Differenzierung steuern.

„Bei der Entscheidung, ob sich Zellen differenzieren oder pluripotent bleiben, spielen zwei Faktoren eine Rolle“, sagt Drukker. „Wir identifizierten NEAT1, eine Ribonukleinsäure (RNA), und TDP-43, ein RNA-bindendes Eiweiß.“ NEAT1 existiert in zwei Formen. Die kurze Form wird von TDP-43 stabilisiert. In diesem Fall entstehen keine Paraspecklen; die Zelle bleibt pluripotent, sie ist unverändert. Umgekehrt führt der Abbau von TDP-43 zur Bildung der langen Form von NEAT1, und Paraspecklen entstehen. Eine iPS-Zelle beginnt, sich zu differenzieren. Modic ergänzt: „Diese Steuerung könnte die Grundlage für die Entscheidung der Stammzelle sein, wann sie ausdifferenziert.“ Dr. Silvia Schirge und Prof. Heiko Lickert vom Institut für Diabetes- und Regenerationsforschung (IDR) am Helmholtz Zentrum München halfen den Autoren aufzuzeigen, dass Paraspecklen auch für eine effiziente Differenzierung bei der murinen Embryonalentwicklung entscheidend sind. Diese Studienergebnisse bedeuten einen Durchbruch für das Verständnis von Differenzierungs- und Entwicklungsprozessen bei Stammzellen.

Zusammenhang mit Erkrankungen

Drukker sieht in den Ergebnissen mehr als einen Beitrag zur Grundlagenforschung, denn „Paraspecklen stehen mit mehreren Krankheiten in Verbindung, wurden aber bislang kaum im Kontext der Entwicklungs- und Stammzellbiologie untersucht“. Bei der amyotrophen Lateralsklerose (ALS) sei die Rolle von TDP-43 und das Auftreten von Paraspecklen besonders offensichtlich. In den Nervenzellen, die für unsere Muskeln zuständig und von ALS betroffen sind, wird TDP-43 merkwürdig reguliert und bildet toxische Ansammlungen. Außerdem tritt NEAT1 in der langen Form vermehrt auf, und es sind mehr Paraspecklen nachweisbar. Diese Mechanismen gelten als früher Hinweis auf ALS – noch bevor Patienten klinisch relevante Beschwerden haben.

Im nächsten Schritt wollen Druckker und sein Wissenschaftsteam andere Zelltypen auf Paraspecklen, RNAs und deren Zusammenspiel untersuchen. Dann wird sich auch zeigen, ob sich die neu entdeckten Moleküle vielleicht als Zielstrukturen für Pharmakotherapien eignen.

Quelle: Nach einer Presseinformation des Helmholtz Zentrum München (30.04.2019)

(map)
Zurück zur Startseite
Weitere Newsmeldungen
    • Autoimmuntherapie: Fraunhofer treibt selektive Nervenstimulation voran
      Gezielte Nervenstimulation statt Medikamente: Mit dem Kick-off des PREPARE-Projekts DUSTIN startete im Juni 2025 eine vielversprechende Forschungsallianz zur visionären Behandlung von Autoimmunerkrankungen ihre Arbeit. Vier Fraunhofer-Institute bündeln ihre Kompetenzen in der Entwicklung eines minia...
      Mehr
    • Zur Entscheidungsfindung nutzen Menschen im Gehirn kodierte Informationen
      Informationen, die den eigenen Überzeugungen widersprechen, werden von den Menschen oft ignoriert. Daraus resultiert eine Tendenz, die eigenen Urteile immer wieder zu bestätigen – dies wird auch als „Confirmation bias“ bezeichnet. Dabei sind sowohl die eine Entscheidung bestätigenden als auch die ih...
      Mehr
    • Neue Erkenntnisse zur Produktion von künstlichem Blut
      In Deutschland werden täglich etwa 15.000 Blutkonserven benötigt, die bislang in der Regel von freiwilligen Spender*innen stammen. Die Forschung zur künstlichen Herstellung von Blut in größeren Mengen läuft bereits seit Jahrzehnten, ist jedoch noch lang nicht am Ziel.
      Mehr
    • Wirksamkeit von RNA-basierten Medikamenten kann gesteigert werden
      Maßgeschneiderte Therapien gewinnen in der modernen Medizin zunehmend an Bedeutung. Ein vielversprechender Ansatz sind sogenannte Antisense-Oligonukleotide, kurz ASOs. Diese kleinen, künstlich hergestellten Moleküle greifen gezielt in den Zellstoffwechsel ein, indem sie die Bildung krankmachender Pr...
      Mehr
Zum Archiv

Quellen-URL (abgerufen am 16.07.2025 - 08:29): http://www.neuromedizin.de/Forschung/Helmholtz-Zentrum-Muenchen--Forscher-liefern-ein-tieferes-Ve.htm
Copyright © 2014 | http://www.neuromedizin.de ist ein Dienst der MedienCompany GmbH. | Medizin-Medienverlag | Amselweg 2, 83229 Aschau i. Chiemgau | Geschäftsführer: Beate Döring | Amtsgericht Traunstein | HRB 19711 | USt-IdNr.: DE 223237239