Mit Wellenleitern in höhere Dimensionen vorstoßen, um mit optischen Quantencomputern Gehirnvorgänge nachzubauen

Gemeinsam mit Kollegen aus Australien und den USA haben Physiker der Uni Rostock erstmals eine Möglichkeit entwickelt, wie sich Lösungen in höheren, man könnte sagen, „fiktiven“ Dimensionen auf den uns bekannten dreidimensionalen Raum übertragen lassen. Die Quantenoptiker realisieren höherdimensionale Synthetische Dimensionen mittels quantenoptischen Wellenleitern. Damit wird es möglich, hochkomplexe Wechselwirkungen, wie sie für das Verständnis von Gehirnvorgängen erforderlich sind, zu simulieren und zukünftig leistungsfähigere optische Quantencomputer zu entwickeln.

Phyisiker

BU: Professor Alexander Szameit (rechts im Bild) bespricht mit Lukas Maczewsky im Laserlabor der Universität Rostock den experimentellen Aufbau (Foto: Universität Rostock / ITMZ).

In einem sogenannten Femtosekunden-Laserlabor des Instituts für Physik an der Universität Rostock stehen Professor Alexander Szameit und Doktorand Lukas Maczewsky an einem großen metallischen Tisch, dessen Aufbau entfernt an eine futuristische Stadt erinnert. Doch werden hier keine Verkehrsströme der Zukunft simuliert, sondern Laserlicht über dutzende Spiegel so durch Pfade in optischen Chips, sogenannte Wellenleiter, geschickt, dass das Licht auf ganz ungewöhnliche Weise miteinander wechselwirkt. „Mit diesen Experimenten erforschen wir die technischen Grundlagen für künstliche Intelligenz (KI) und so einen wesentlichen Teil der menschlichen Zukunft“, sagt Szameit.

Was gibt den Rostocker Wissenschaftlern die Zuversicht, auf dem richtigen Weg zu sein?

Das könne man sich vorstellen, wie die Darstellung einer räumlichen Figur per Zentralperspektive auf ein zweidimensionales Blatt Papier oder auf einen Bildschirm. Mathematisch spricht man von einer Abbildung des n-dimensionalen Raumes auf einen niedrigdimensionalen Raum. N-Dimensional bedeutet, dass es tatsächlich keine Beschränkung hinsichtlich der Anzahl der Dimensionen gibt. Das Licht, so die Rostocker Physiker, sei dabei nur ein Werkzeug, dass sich über das ausgeklügelte Design der lichtleitenden Wellenleiterstruktur in Glas-Chips besonders einfach manipulieren lasse. Es zeige aber Grundsätzliches. Aufgabenstellungen, die manche bisher als akademische Gedankenspielereien mathematischer Nerds angesehen haben, erhalten mit den neuen Experimenten auf einen Schlag eine ungeahnte Relevanz für den technischen Fortschritt und irgendwann für unser alltägliches Leben. „Mit der Methode der Simulation höherer Dimensionen in Lichtwellenleitern haben wir den Schlüssel zur Zukunft von Quantencomputern in der Hand“, ist sich Maczewsky sicher. Diese neue Generation von Computern werde nicht mit Strom, sondern mit Licht rechnen und deshalb viel schneller sein.

Dem 40-jährigen Physikprofessor Szameit ist jedoch auch klar, dass er bei den meisten Menschen auf Unverständnis stößt, wenn er von höheren Dimensionen als Länge, Breite und Höhe spricht. Bereits die von Albert Einstein begründete vierdimensionale Raum-Zeit ist für Menschen nicht vorstellbar. Es gibt bisher nicht einmal einen Namen für die neuen Dimensionen: „Hyperbreite, Hypertiefe und Hyperhöhe“, schlagen die beiden Physiker vor. Szameit gesteht ein: „Manchmal merke ich selbst, wie absurd das alles klingt.“ Doch lassen sich mit dem Umweg über die höheren Dimensionen Baupläne für den Quantencomputer und vieles mehr im realen Raum entwickeln. Dazu mussten die Wissenschaftler beweisen, dass die Ergebnisse der Messungen tatsächlich Resultat der korrekten Manipulation des Lichtes gemäß den hochdimensionalen Gleichungen sind. Das aber ist ihnen mit einer gerade erschienenen Veröffentlichung gelungen. Wenn die Physiker das Licht im Labor durch die Wellenleiter in den Glas-Chips schicken, kommt es am anderen Ende wieder verändert heraus. Anhand der Muster auf dem Monitor können die Physiker beweisen, dass sich das Licht in einem höherdimensionalen Raum aufgehalten hat.

„Die Experimente von Szameits Arbeitsgruppe sind hilfreich für das Verständnis, wie in höheren Dimensionen die Dynamik von Photonen aussehen könnte“, sagt der Direktor des Rostocker Institutes für Physik, Professor Stefan Scheel. Selbst für die Fachwelt seien die Erkenntnisse jedoch völlig neu und noch nicht verstanden. Noch stecke alles in den Kinderschuhen, aber zukünftig werde es möglich sein, mit optischen Quantencomputern Gehirnvorgänge nachzubauen. Damit wäre die Möglichkeit gegeben, zumindest ansatzweise das menschliche Gehirn zu verstehen. Immer in dem Wissen, dass das Gehirn der beste Computer ist, den es gibt.

Originalarbeit

Synthesizing multi-dimensional excitation dynamics and localization transition in one-dimensional lattices, Nature Photonics 2020.

Quelle: PI Uni Rostock, 27.01.2020 "Physiker der Universität Rostock stoßen mit Wellenleitern in höhere Dimensionen vor"

(map)
Zurück zur Startseite
Weitere Newsmeldungen
    • anti-IgLON5-Erkrankung im Frühstadium gut behandeltbar
      Die anti-IgLON5-Erkrankung wurde erst 2014 erstmals beschrieben und tritt typischerweise im höheren Lebensalter auf. Unruhiger Schlaf, Bewegungs- Schluck- und Sprechstörungen sind typisch für die seltene Autoimmunerkrankung. Doch eine Menge unterschiedlicher weiterer Symptome macht die Diagnose der ...
      Mehr
    • Stoffwechselprodukt D-2HG fördert die Anpassung an die mitochondriale Dysfunktion
      Mitochondrien sind spezialisierte Bestandteile von Zellen, die in erster Linie für die Energieproduktion zuständig sind, aber auch eine Schlüsselrolle dabei spielen, wie Zellen auf Stress reagieren und sich anpassen. Wenn Mitochondrien nicht mehr funktionieren, insbesondere in Gewebe mit einem hohen...
      Mehr
    • Zuckerersatzstoff Stevia zur Bekämpfung von Bauchspeicheldrüsenkrebs wirksam
      Mit dem natürlichen Zuckerersatzstoff Stevia haben Forscher der Universität von Hiroshima eine neue Waffe gegen Bauchspeicheldrüsenkrebs entdeckt. Vergoren mit bestimmten Bakterien aus Bananenblättern, zerstört das daraus entstehende Präparat Krebszellen, ohne gesunde Nierenzellen anzugreifen, wie e...
      Mehr
    • Warnsignal an Immunsystem: "Rote Flagge" von sterbenden Krebszellen
      90 Prozent aller Menschen, die an Krebs sterben, sterben an Metastasen. Zwei Nachwuchsgruppen der Ruhr-Universität Bochum haben einen Wirkstoffkomplex entwickelt, der Krebszellen auf eine so geschickte Art tötet, dass sie im Sterben eine rote Flagge hochhalten: Sie zeigen so dem Immunsystem, dass mi...
      Mehr
    • Autoimmuntherapie: Fraunhofer treibt selektive Nervenstimulation voran
      Gezielte Nervenstimulation statt Medikamente: Mit dem Kick-off des PREPARE-Projekts DUSTIN startete im Juni 2025 eine vielversprechende Forschungsallianz zur visionären Behandlung von Autoimmunerkrankungen ihre Arbeit. Vier Fraunhofer-Institute bündeln ihre Kompetenzen in der Entwicklung eines minia...
      Mehr
    • Zur Entscheidungsfindung nutzen Menschen im Gehirn kodierte Informationen
      Informationen, die den eigenen Überzeugungen widersprechen, werden von den Menschen oft ignoriert. Daraus resultiert eine Tendenz, die eigenen Urteile immer wieder zu bestätigen – dies wird auch als „Confirmation bias“ bezeichnet. Dabei sind sowohl die eine Entscheidung bestätigenden als auch die ih...
      Mehr
    • Neue Erkenntnisse zur Produktion von künstlichem Blut
      In Deutschland werden täglich etwa 15.000 Blutkonserven benötigt, die bislang in der Regel von freiwilligen Spender*innen stammen. Die Forschung zur künstlichen Herstellung von Blut in größeren Mengen läuft bereits seit Jahrzehnten, ist jedoch noch lang nicht am Ziel.
      Mehr
    • Wirksamkeit von RNA-basierten Medikamenten kann gesteigert werden
      Maßgeschneiderte Therapien gewinnen in der modernen Medizin zunehmend an Bedeutung. Ein vielversprechender Ansatz sind sogenannte Antisense-Oligonukleotide, kurz ASOs. Diese kleinen, künstlich hergestellten Moleküle greifen gezielt in den Zellstoffwechsel ein, indem sie die Bildung krankmachender Pr...
      Mehr
Zum Archiv

Quellen-URL (abgerufen am 09.08.2025 - 15:41): http://www.neuromedizin.de/Forschung/Mit-Wellenleitern-in-hoehere-Dimensionen-vorstossen-um-mit-o.htm
Copyright © 2014 | http://www.neuromedizin.de ist ein Dienst der MedienCompany GmbH. | Medizin-Medienverlag | Amselweg 2, 83229 Aschau i. Chiemgau | Geschäftsführer: Beate Döring | Amtsgericht Traunstein | HRB 19711 | USt-IdNr.: DE 223237239